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Abstract When any two electrons are considered simulta-
neously, the radial density function D(r) in many-electron
atoms is shown to be rigorously separated into inner D<(r)
and outer D>(r) radial densities. Accordingly, radial prop-
erties such as the electron–nucleus attraction energy Ven and
the diamagnetic susceptibility χd are the sum of the inner and
outer contributions. The electron–electron repulsion energy
Vee has an approximate relation with the minus first moment
of the outer density D>(r). For the 102 atoms He through
Lr in their ground states, different characteristics of local
maxima in the radial densities D<(r), D>(r), and D(r) are
reported based on the numerical Hartree-Fock wave func-
tions. Relative contributions of the inner and outer compo-
nents to Ven and χd are also discussed for these atoms.

Keywords Inner and outer radial densities · Nuclear
attraction energy · Diamagnetic susceptibility · Electron
shells · Atoms

1 Introduction

The radial density function D(r) is defined (see, e.g., [1]) as:

D(r) = r2
∫

d� ρ(r) , (1a)

where (r, �) are polar coordinates of the vector r and

ρ(r) = N

∫
dsdx2 . . . dxN |�(x, x2, . . . xN)|2 , (1b)

is the single-electron density associated with a normalized
N -electron wave function �(x1, . . . , xN) with xi = (ri , si)
being the combined position-spin coordinates of the electron
i. The radial density D(r) represents the probability density
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function of finding an electron at a distance between r and
r + dr from the coordinate origin, and is normalized as:
∞∫

0

dr D(r) = N . (2)

Though D(r) is a one-dimensional condensation of the
wave function�(x1, . . . , xN)with 4N variables, radial phys-
ical properties which depend solely on the radial variable r
are completely determined by the knowledge of D(r). Two
typical examples for atomic systems are the electron–nucleus
attraction energy Ven = −Z < r−1 > and the diamagnetic
susceptibility χd = − < r2 > /(6c2), where Z and c are
the nuclear charge and the speed of light. Another impor-
tant aspect of the atomic radial density D(r) is that it is [2]
a Hankel transform of the isotropic form factor F(k) and
exhibits (see, e.g., Refs. [2–6]) several local maxima corre-
sponding to the electron shells. For the Ar atom, good agree-
ment [2] of the D(r) from electron diffraction experiments
and from Hartree-Fock calculations is well-known [1], where
three local maxima are clearly observed in both D(r), reflect-
ing the occupied K, L, and M shells.

In the present paper, we point out that if any two elec-
trons are considered simultaneously, the radial density D(r)
is rigorously partitioned into two component functions, inner
D<(r) and outer D>(r) radial density functions. The inner
radial density function D<(r) represents the probability den-
sity that one electron moves with a radius r which is smaller
than the radius of the other electron, and the outer radial den-
sity function D>(r) is the probability density for the oppo-
site situation. The partitioning of D(r) into two components
results in the corresponding partitioning of any radial prop-
erties, including Ven and χd. The electron–electron repulsion
energy Vee is shown to have an approximate relation with
the minus first moment of the outer density D>(r). For the
102 atoms He through Lr in their ground states, the three
radial densities D<(r), D>(r), and D(r) are examined and
the differences in their maximum characteristics are clarified
based on the numerical Hartree-Fock wave functions. Rela-
tive contributions of the inner and outer components to Ven
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Fig. 1 Hartree-Fock radial densities D<(r), D>(r), and D(r) for a He, b Ne, and c Ar atoms

and χd as well as an approximation to Vee are also discussed
for these atoms. Hartree atomic units are used throughout.

2 Inner and outer radial density functions

We first introduce (see, e.g., [7]) the two-electron radial den-
sity function D2(r1, r2) given by

D2(r1, r2) = r2
1 r2

2

∫
d�1d�2�(r1, r2) , (3a)

where (ri, �i) are polar coordinates of ri and

�(r1, r2) = N(N − 1)

2

×
∫

ds1ds2dx3 . . . dxN |�(x1, . . . , xN)|2 , (3b)

is the spinless two-electron density function normalized to
N(N − 1)/2, the number of electron pairs. The function
D2(r1, r2) is the probability density that one electron is at

radius r1 and the other electron at radius r2, when any two
electrons are considered simultaneously, and is normalized
as

∞∫

0

dr1

∞∫

0

dr2 D2(r1, r2) = N(N − 1)

2
. (4)

Then the single-electron radial density D(r), defined by Eq.
(1a), is alternatively obtained from D2(r1, r2) as

D(r) = 2

N − 1

∞∫

0

dr2 D2(r, r2) . (5)

Into the integrand of Eq. (5), we now insert an identity
relation

H(r − r2) + H(r2 − r) = 1 , (6a)
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Fig. 2 Hartree-Fock radial densities D<(r), D>(r), and D(r) for a Kr, b Xe, and c Rn atoms

of the Heaviside function [8] H(x − a) defined by

H(x − a) =




0 , x < a
1
2 , x = a

1 , x > a

. (6b)

We then have

D(r) = D<(r) + D>(r) , (7)

where

D<(r) = 2

N − 1

∞∫

0

dr2 H(r2 − r) D2(r, r2)

= 2

N − 1

∞∫

r

dr2 D2(r, r2) , (8a)

D>(r) = 2

N − 1

∞∫

0

dr2 H(r − r2) D2(r, r2)

= 2

N − 1

r∫

0

dr2 D2(r, r2) . (8b)

The function D<(r) is called inner radial function, since it
represents the probability density that one electron moves
with a radius r which is smaller than the radius of the other

Table 1 Atomic numbers Z of ground-state atoms for which electron
shells are detected as the local maxima in the three radial densities

Shell D<(r) D>(r) D(r)

K 2–103 2–8 2–103
L 4–103 3–42 3–103
M 17–103 11–103 11–103
N 49–103 36–103 40–103
O None 82–103 92–103
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electron. The function D>(r) is the probability density for
the opposite situation and is called outer radial function. The
inner and outer radial functions are normalized as
∞∫

0

drD<(r) =
∞∫

0

drD>(r) = N

2
, (9)

in accord with Eqs. (2) and (7). From the comparison of Eqs.
(5), (8a), and (8b), we see that D<(r) is a more important
component function of D(r) when r is small while D>(r) is
when r is large. If we consider the spherically-averaged den-
sities ρ(r) = D(r)/(4π r2), ρ<(r) = D<(r)/(4π r2), and
ρ>(r) = D>(r)/(4π r2) corresponding to the three radial
densities, we find that

ρ<(r) → ρ(r) and ρ>(r) → 0, when r → 0, (10a)

ρ<(r) → 0 and ρ>(r) → ρ(r), when r → ∞. (10b)

Thus the electron–nucleus cusp property [9,10] of ρ(r) ap-
pears only in the inner density ρ<(r), whereas the long-range
asymptotic behavior [11–16] of ρ(r) appears only in the outer
density ρ>(r).

Since the radial density D(r) is rigorously separated into
the inner D<(r) and outer D>(r) densities, any radial prop-
erty f (r) which depends only on the radial variable r is par-
titioned correspondingly. As a simple example, we have for
the radial moments f (r) = rn that

< rn > = < rn
< > + < rn

> > , (11a)

where

< rn >=
∞∫

0

dr rn D(r) , (11b)

< rn
< >=

∞∫

0

dr rn D<(r)

= 1

N − 1

∞∫

0

dr1

∞∫

0

dr2 rn
< D2(r1, r2) , (11c)

< rn
> >=

∞∫

0

dr rn D>(r)

= 1

N − 1

∞∫

0

dr1

∞∫

0

dr2 rn
> D2(r1, r2) , (11d)

in which r< = min(r1, r2) and r> = max(r1, r2). A few
important cases of Eq. (11a) are: when n = −1, we obtain a
partitioning of the electron–nucleus attraction energy Ven =
−Z < r−1 > of atoms, where the nuclear position is the nat-
ural choice of the coordinate origin. When n = 1, we have
the inner < r< > and outer < r> > electron radii studied
in [17–19], under the condition that all the radial densities
are normalized to unity. When n = 2, Eq. (11a) shows that
the diamagnetic susceptibility χd = − < r2 > /(6c2) is the
sum of the inner and outer contributions.

Another useful relation follows from the Laplace expan-
sion (see, e.g., [20]) of the reciprocal interelectronic distance,

1

r12
= 1

|r1 − r2| =
∞∑

n=0

rn
<

rn+1
>

Pn(cos α) , (12)

whereα is the angle between r1 and r2 andPn(x) is the Legen-
dre function. If we keep only the leading term of Eq. (12),
we obtain for the electron–electron repulsion energy Vee =
< r−1

12 > that

Vee
∼= (N − 1)

∞∫

0

dr r−1 D>(r) = (N − 1) < r−1
> > , (13)

where the equality holds when only s orbitals are involved
such as the ground-state He, Li, and Be atoms in the Har-
tree-Fock approximation. Equation (13) provides us with an
approximate relation between the electron repulsion energy
Vee and the minus first moment < r−1

> > of the outer radial
density D>(r). The relation was previously discussed [21]
for the He atom, but the connection to the outer radial den-
sity was not mentioned.

Except for the expression of Ven, the above discussion is
valid not only for atoms but also for molecules and solids. For
the latter cases, however, the meanings of the inner D<(r)
and outer D>(r) radial densities are less unique, since they
depend on the choice of the coordinate origin.

3 Results and discussion for atoms

Using a modified version of the MCHF72 program [22],
we have calculated the Hartree-Fock radial densities D<(r),
D>(r), and D(r) for the 102 atoms He (atomic number Z =
2) through Lr (Z = 103) in their ground states [23].

Figures 1 and 2 exemplify the radial densities D<(r),
D>(r), and D(r) for the six group-18 atoms. As mentioned
in the previous section, we find in the figures that the inner
density D<(r) is a more important component of D(r) for
a small r , while the outer density D>(r) is for a large r .
Accordingly, the characteristics of local maxima are differ-
ent among the three densities, though the largest number of
local maxima is always found in D(r). When we examine the
inner or core region, local maxima in D(r) originate mainly
from D<(r). For example, the innermost maximum corre-
sponding to the K shell is observed for all the atoms Z =
2–103 in D<(r) and D(r), but only for 7 atoms Z = 2–8 in
D>(r). When we consider the outer or valence region, on the
other hand, local maxima and shoulders in D(r) are mainly
due to D>(r). Moreover D>(r) detects new maxima missing
in D(r) for some atoms. An example is that the fifth maxi-
mum corresponding to the O shell is found for Z = 92–103
in D(r), but for Z = 82–103 in D>(r). For the 102 atoms
examined, Table 1 summarizes how local maxima appear in
the three radial densities.

For n = −2, −1, 1, and 2, the ratios < rn
< > / < rn >

of the inner moments < rn
< > relative to the total moments
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Fig. 3 The ratios < rn
< > / < rn > of the inner moments < rn

< > relative to the total moments < rn > for n = −2, −1, 1, and 2

Fig. 4 Correlation between the electron–electron repulsion energies Vee and the minus first moments (N −1) < r−1
> > of the outer radial densities

< rn > are depicted in Fig. 3 as a function of Z. When n < 0,
the ratios are almost constants (0.98 for n = −2 and 0.83 for
n = −1) except for the first several atoms and show that
the major parts of the moments come from the inner radial
density D<(r). In fact, the inner contribution occupies 82.9%
of the electron–nucleus attraction energy Ven on an average,
with the minimum 69.6% at Z = 2 and the maximum 83.8%
at Z = 58. On the other hand, when n > 0, the inner contribu-
tions are smaller than the outer ones. The average values of
the ratios are only 0.23 for n = 1 and 0.09 for n = 2. How-
ever, the ratios show a periodical Z-dependence reflecting
the valence electron configuration of atoms. In particular, we
have local minima for the group-1 or -2 atoms with diffuse
s orbitals, whereas we have local maxima for the group-18
atoms with fully-occupied orbitals. On an average, the outer
radial density D>(r) is responsible to 91.0% of the diamag-

netic susceptibility χd, with the minimum 78.6% at Z = 2
and the maximum 97.2% at Z = 3.

We have also examined a possible correlation between
the electron–electron repulsion energies Vee and the minus
first moments (N − 1) < r−1

> > of the outer radial den-
sities D>(r), suggested by Eq. (13). Figure 4 demonstrates
that there is an excellent linear correlation between the two
properties. For the 102 atoms, a least-square fitting indeed
gives

Vee
∼= 0.981307(N − 1) < r−1

> > −7.942473 , (14)

with correlation coefficient 0.999999. A finer analysis shows
that Vee = (N − 1) < r−1

> > when Z = 2–4, but Vee <
(N − 1) < r−1

> > when Z = 5–103. For the latter case,
however, (N − 1) < r−1

> > is only 2.5% larger than Vee
on an average, with the minimum 1.4% at Z = 5 and the



64 T. Koga, H. Matsuyama

maximum 3.7% at Z = 10. Thus the electron–electron
repulsion energies Vee are simply approximated by (N − 1)
< r−1

> > themselves, if we accept at most 4% relative errors.
For the He atom, we have performed a pilot examination

of the electron correlation effect on the distributions of the in-
ner and outer density functions, based on multi-configuration
Hartree-Fock calculations. The results show that the inner and
outer densities shift towards the inner and outer directions,
respectively, though the magnitudes are very small. Namely,
the electron correlation works to separate the two density dis-
tributions from each other. We wish to report whether such
correlation effect is common, when appropriate correlated
wave functions are available for a series of atoms.

4 Concluding remarks

When any two electrons are considered simultaneously, the
radial density function D(r) in many-electron atoms is sep-
arated into the inner D<(r) and outer D>(r) radial densities.
Accordingly, radial properties such as the electron–nucleus
attraction energy Ven and the diamagnetic susceptibility χd
are the sum of the inner and outer contributions. The elec-
tron–electron repulsion energy Vee has an approximate rela-
tion with the minus first moment of the outer density D>(r).
Based on Hartree-Fock calculations, numerical results have
been discussed for the 102 atoms He through Lr in their
ground states.

In the present study, the inner and outer densities have
been introduced by decomposing the two-electron density
into two parts based on the property of the Heaviside func-
tion H(x − a). A possible generalization is to separate the
density into three or more parts by the repeated use of a win-
dow function H(x − a) − H(x − b), which clips out only
the region a < x < b of an operand function. In this case,

however, the assignment of meaningful boundary values will
be important from the physical point of view.
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